New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > naecoms-o | GIF version |
Description: A commutation rule for distinct variable specifiers. Version of naecoms 1948 using ax-10o 2139. (Contributed by NM, 2-Jan-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nalequcoms-o.1 | ⊢ (¬ ∀x x = y → φ) |
Ref | Expression |
---|---|
naecoms-o | ⊢ (¬ ∀y y = x → φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aecom-o 2151 | . . 3 ⊢ (∀x x = y → ∀y y = x) | |
2 | nalequcoms-o.1 | . . 3 ⊢ (¬ ∀x x = y → φ) | |
3 | 1, 2 | nsyl4 134 | . 2 ⊢ (¬ φ → ∀y y = x) |
4 | 3 | con1i 121 | 1 ⊢ (¬ ∀y y = x → φ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-10o 2139 |
This theorem depends on definitions: df-bi 177 df-ex 1542 |
This theorem is referenced by: ax11inda2ALT 2198 |
Copyright terms: Public domain | W3C validator |