New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > aecom-o | GIF version |
Description: Commutation law for identical variable specifiers. The antecedent and consequent are true when x and y are substituted with the same variable. Lemma L12 in [Megill] p. 445 (p. 12 of the preprint). Version of aecom 1946 using ax-10o 2139. Unlike ax10from10o 2177, this version does not require ax-17 1616. (Contributed by NM, 5-Aug-1993.) (New usage is discouraged.) |
Ref | Expression |
---|---|
aecom-o | ⊢ (∀x x = y → ∀y y = x) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-10o 2139 | . . 3 ⊢ (∀x x = y → (∀x x = y → ∀y x = y)) | |
2 | 1 | pm2.43i 43 | . 2 ⊢ (∀x x = y → ∀y x = y) |
3 | equcomi 1679 | . . 3 ⊢ (x = y → y = x) | |
4 | 3 | alimi 1559 | . 2 ⊢ (∀y x = y → ∀y y = x) |
5 | 2, 4 | syl 15 | 1 ⊢ (∀x x = y → ∀y y = x) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-10o 2139 |
This theorem depends on definitions: df-bi 177 df-ex 1542 |
This theorem is referenced by: aecoms-o 2152 naecoms-o 2178 aev-o 2182 ax11indalem 2197 |
Copyright terms: Public domain | W3C validator |