Proof of Theorem ax11inda2ALT
Step | Hyp | Ref
| Expression |
1 | | ax-1 6 |
. . . . . . . 8
⊢ (∀xφ → (x = y →
∀xφ)) |
2 | 1 | a5i-o 2150 |
. . . . . . 7
⊢ (∀xφ → ∀x(x = y →
∀xφ)) |
3 | 2 | a1i 10 |
. . . . . 6
⊢ (∀z z = x →
(∀xφ →
∀x(x = y → ∀xφ))) |
4 | | biidd 228 |
. . . . . . 7
⊢ (∀z z = x →
(φ ↔ φ)) |
5 | 4 | dral1-o 2154 |
. . . . . 6
⊢ (∀z z = x →
(∀zφ ↔
∀xφ)) |
6 | 5 | imbi2d 307 |
. . . . . . 7
⊢ (∀z z = x →
((x = y
→ ∀zφ) ↔
(x = y
→ ∀xφ))) |
7 | 6 | dral2-o 2181 |
. . . . . 6
⊢ (∀z z = x →
(∀x(x = y → ∀zφ) ↔ ∀x(x = y →
∀xφ))) |
8 | 3, 5, 7 | 3imtr4d 259 |
. . . . 5
⊢ (∀z z = x →
(∀zφ →
∀x(x = y → ∀zφ))) |
9 | 8 | aecoms-o 2152 |
. . . 4
⊢ (∀x x = z →
(∀zφ →
∀x(x = y → ∀zφ))) |
10 | 9 | a1d 22 |
. . 3
⊢ (∀x x = z →
(x = y
→ (∀zφ →
∀x(x = y → ∀zφ)))) |
11 | 10 | a1d 22 |
. 2
⊢ (∀x x = z →
(¬ ∀x x = y → (x =
y → (∀zφ → ∀x(x = y →
∀zφ))))) |
12 | | simplr 731 |
. . . . 5
⊢ (((¬ ∀x x = z ∧ ¬ ∀x x = y) ∧ x = y) → ¬ ∀x x = y) |
13 | | dveeq1-o 2187 |
. . . . . . . 8
⊢ (¬ ∀z z = x →
(x = y
→ ∀z x = y)) |
14 | 13 | naecoms-o 2178 |
. . . . . . 7
⊢ (¬ ∀x x = z →
(x = y
→ ∀z x = y)) |
15 | 14 | imp 418 |
. . . . . 6
⊢ ((¬ ∀x x = z ∧ x = y) → ∀z x = y) |
16 | 15 | adantlr 695 |
. . . . 5
⊢ (((¬ ∀x x = z ∧ ¬ ∀x x = y) ∧ x = y) → ∀z x = y) |
17 | | hbnae-o 2179 |
. . . . . . 7
⊢ (¬ ∀x x = y →
∀z
¬ ∀x x = y) |
18 | | hba1-o 2149 |
. . . . . . 7
⊢ (∀z x = y →
∀z∀z x = y) |
19 | 17, 18 | hban 1828 |
. . . . . 6
⊢ ((¬ ∀x x = y ∧ ∀z x = y) → ∀z(¬
∀x
x = y
∧ ∀z x = y)) |
20 | | ax-4 2135 |
. . . . . . 7
⊢ (∀z x = y →
x = y) |
21 | | ax11inda2.1 |
. . . . . . . 8
⊢ (¬ ∀x x = y →
(x = y
→ (φ → ∀x(x = y →
φ)))) |
22 | 21 | imp 418 |
. . . . . . 7
⊢ ((¬ ∀x x = y ∧ x = y) → (φ
→ ∀x(x = y → φ))) |
23 | 20, 22 | sylan2 460 |
. . . . . 6
⊢ ((¬ ∀x x = y ∧ ∀z x = y) → (φ
→ ∀x(x = y → φ))) |
24 | 19, 23 | alimdh 1563 |
. . . . 5
⊢ ((¬ ∀x x = y ∧ ∀z x = y) → (∀zφ → ∀z∀x(x = y →
φ))) |
25 | 12, 16, 24 | syl2anc 642 |
. . . 4
⊢ (((¬ ∀x x = z ∧ ¬ ∀x x = y) ∧ x = y) → (∀zφ → ∀z∀x(x = y →
φ))) |
26 | | ax-7 1734 |
. . . . . 6
⊢ (∀z∀x(x = y →
φ) → ∀x∀z(x = y →
φ)) |
27 | | hbnae-o 2179 |
. . . . . . 7
⊢ (¬ ∀x x = z →
∀x
¬ ∀x x = z) |
28 | | hbnae-o 2179 |
. . . . . . . . 9
⊢ (¬ ∀x x = z →
∀z
¬ ∀x x = z) |
29 | 28, 14 | nfdh 1767 |
. . . . . . . 8
⊢ (¬ ∀x x = z →
Ⅎz x = y) |
30 | | 19.21t 1795 |
. . . . . . . 8
⊢ (Ⅎz x = y → (∀z(x = y →
φ) ↔ (x = y →
∀zφ))) |
31 | 29, 30 | syl 15 |
. . . . . . 7
⊢ (¬ ∀x x = z →
(∀z(x = y → φ)
↔ (x = y → ∀zφ))) |
32 | 27, 31 | albidh 1590 |
. . . . . 6
⊢ (¬ ∀x x = z →
(∀x∀z(x = y → φ)
↔ ∀x(x = y → ∀zφ))) |
33 | 26, 32 | syl5ib 210 |
. . . . 5
⊢ (¬ ∀x x = z →
(∀z∀x(x = y → φ)
→ ∀x(x = y → ∀zφ))) |
34 | 33 | ad2antrr 706 |
. . . 4
⊢ (((¬ ∀x x = z ∧ ¬ ∀x x = y) ∧ x = y) → (∀z∀x(x = y →
φ) → ∀x(x = y →
∀zφ))) |
35 | 25, 34 | syld 40 |
. . 3
⊢ (((¬ ∀x x = z ∧ ¬ ∀x x = y) ∧ x = y) → (∀zφ → ∀x(x = y →
∀zφ))) |
36 | 35 | exp31 587 |
. 2
⊢ (¬ ∀x x = z →
(¬ ∀x x = y → (x =
y → (∀zφ → ∀x(x = y →
∀zφ))))) |
37 | 11, 36 | pm2.61i 156 |
1
⊢ (¬ ∀x x = y →
(x = y
→ (∀zφ →
∀x(x = y → ∀zφ)))) |