![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > syl6bbr | GIF version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
syl6bbr.1 | ⊢ (φ → (ψ ↔ χ)) |
syl6bbr.2 | ⊢ (θ ↔ χ) |
Ref | Expression |
---|---|
syl6bbr | ⊢ (φ → (ψ ↔ θ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6bbr.1 | . 2 ⊢ (φ → (ψ ↔ χ)) | |
2 | syl6bbr.2 | . . 3 ⊢ (θ ↔ χ) | |
3 | 2 | bicomi 193 | . 2 ⊢ (χ ↔ θ) |
4 | 1, 3 | syl6bb 252 | 1 ⊢ (φ → (ψ ↔ θ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: 3bitr4g 279 bibi2i 304 mtt 329 nbn2 334 equsalhwOLD 1839 equsal 1960 necon2abid 2573 eueq3 3011 sbcabel 3123 sbcel12g 3151 sbceqg 3152 sbcnel12g 3153 sbcne12g 3154 n0moeu 3562 reldisj 3594 r19.3rz 3641 r19.3rzv 3643 r19.9rzv 3644 pw1in 4164 opkelimagekg 4271 eqpw1uni 4330 addcid1 4405 eqtfinrelk 4486 nnadjoin 4520 proj1op 4600 phidisjnn 4615 phialllem1 4616 rabxp 4814 brswap2 4860 iss 5000 xpcan 5057 xpcan2 5058 dffn5 5363 fnrnfv 5364 funimass4 5368 funimass3 5404 inpreima 5409 fnasrn 5417 dff4 5421 fconst4 5458 f1ofveu 5480 eqfnov 5589 txpcofun 5803 mapsn 6026 elncs 6119 ce0addcnnul 6179 ce0nnulb 6182 ceclb 6183 sbth 6206 lectr 6211 nchoicelem8 6296 nchoicelem12 6300 nchoicelem16 6304 fnfreclem3 6319 |
Copyright terms: Public domain | W3C validator |