New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > syl6bbr | GIF version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
syl6bbr.1 | ⊢ (φ → (ψ ↔ χ)) |
syl6bbr.2 | ⊢ (θ ↔ χ) |
Ref | Expression |
---|---|
syl6bbr | ⊢ (φ → (ψ ↔ θ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6bbr.1 | . 2 ⊢ (φ → (ψ ↔ χ)) | |
2 | syl6bbr.2 | . . 3 ⊢ (θ ↔ χ) | |
3 | 2 | bicomi 193 | . 2 ⊢ (χ ↔ θ) |
4 | 1, 3 | syl6bb 252 | 1 ⊢ (φ → (ψ ↔ θ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: 3bitr4g 279 bibi2i 304 mtt 329 nbn2 334 equsalhwOLD 1839 equsal 1960 necon2abid 2574 eueq3 3012 sbcabel 3124 sbcel12g 3152 sbceqg 3153 sbcnel12g 3154 sbcne12g 3155 n0moeu 3563 reldisj 3595 r19.3rz 3642 r19.3rzv 3644 r19.9rzv 3645 pw1in 4165 opkelimagekg 4272 eqpw1uni 4331 addcid1 4406 eqtfinrelk 4487 nnadjoin 4521 proj1op 4601 phidisjnn 4616 phialllem1 4617 rabxp 4815 brswap2 4861 iss 5001 xpcan 5058 xpcan2 5059 dffn5 5364 fnrnfv 5365 funimass4 5369 funimass3 5405 inpreima 5410 fnasrn 5418 dff4 5422 fconst4 5459 f1ofveu 5481 eqfnov 5590 txpcofun 5804 mapsn 6027 elncs 6120 ce0addcnnul 6180 ce0nnulb 6183 ceclb 6184 sbth 6207 lectr 6212 nchoicelem8 6297 nchoicelem12 6301 nchoicelem16 6305 fnfreclem3 6320 |
Copyright terms: Public domain | W3C validator |