NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  necon3ai GIF version

Theorem necon3ai 2557
Description: Contrapositive inference for inequality. (Contributed by NM, 23-May-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Hypothesis
Ref Expression
necon3ai.1 (φA = B)
Assertion
Ref Expression
necon3ai (AB → ¬ φ)

Proof of Theorem necon3ai
StepHypRef Expression
1 necon3ai.1 . . 3 (φA = B)
2 nne 2521 . . 3 ABA = B)
31, 2sylibr 203 . 2 (φ → ¬ AB)
43con2i 112 1 (AB → ¬ φ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1642  wne 2517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-ne 2519
This theorem is referenced by:  disjsn2  3788  fvunsn  5445  enadjlem1  6060  enadj  6061
  Copyright terms: Public domain W3C validator