New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > fvunsn | GIF version |
Description: Remove an ordered pair not participating in a function value. (Contributed by set.mm contributors, 1-Oct-2013.) (Revised by Mario Carneiro, 28-May-2014.) |
Ref | Expression |
---|---|
fvunsn | ⊢ (B ≠ D → ((A ∪ {〈B, C〉}) ‘D) = (A ‘D)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resundir 4983 | . . . 4 ⊢ ((A ∪ {〈B, C〉}) ↾ {D}) = ((A ↾ {D}) ∪ ({〈B, C〉} ↾ {D})) | |
2 | elsni 3758 | . . . . . . . 8 ⊢ (B ∈ {D} → B = D) | |
3 | 2 | necon3ai 2557 | . . . . . . 7 ⊢ (B ≠ D → ¬ B ∈ {D}) |
4 | ressnop0 5437 | . . . . . . 7 ⊢ (¬ B ∈ {D} → ({〈B, C〉} ↾ {D}) = ∅) | |
5 | 3, 4 | syl 15 | . . . . . 6 ⊢ (B ≠ D → ({〈B, C〉} ↾ {D}) = ∅) |
6 | 5 | uneq2d 3419 | . . . . 5 ⊢ (B ≠ D → ((A ↾ {D}) ∪ ({〈B, C〉} ↾ {D})) = ((A ↾ {D}) ∪ ∅)) |
7 | un0 3576 | . . . . 5 ⊢ ((A ↾ {D}) ∪ ∅) = (A ↾ {D}) | |
8 | 6, 7 | syl6eq 2401 | . . . 4 ⊢ (B ≠ D → ((A ↾ {D}) ∪ ({〈B, C〉} ↾ {D})) = (A ↾ {D})) |
9 | 1, 8 | syl5eq 2397 | . . 3 ⊢ (B ≠ D → ((A ∪ {〈B, C〉}) ↾ {D}) = (A ↾ {D})) |
10 | 9 | fveq1d 5331 | . 2 ⊢ (B ≠ D → (((A ∪ {〈B, C〉}) ↾ {D}) ‘D) = ((A ↾ {D}) ‘D)) |
11 | snidg 3759 | . . . 4 ⊢ (D ∈ V → D ∈ {D}) | |
12 | fvres 5343 | . . . 4 ⊢ (D ∈ {D} → (((A ∪ {〈B, C〉}) ↾ {D}) ‘D) = ((A ∪ {〈B, C〉}) ‘D)) | |
13 | 11, 12 | syl 15 | . . 3 ⊢ (D ∈ V → (((A ∪ {〈B, C〉}) ↾ {D}) ‘D) = ((A ∪ {〈B, C〉}) ‘D)) |
14 | fvprc 5326 | . . . 4 ⊢ (¬ D ∈ V → (((A ∪ {〈B, C〉}) ↾ {D}) ‘D) = ∅) | |
15 | fvprc 5326 | . . . 4 ⊢ (¬ D ∈ V → ((A ∪ {〈B, C〉}) ‘D) = ∅) | |
16 | 14, 15 | eqtr4d 2388 | . . 3 ⊢ (¬ D ∈ V → (((A ∪ {〈B, C〉}) ↾ {D}) ‘D) = ((A ∪ {〈B, C〉}) ‘D)) |
17 | 13, 16 | pm2.61i 156 | . 2 ⊢ (((A ∪ {〈B, C〉}) ↾ {D}) ‘D) = ((A ∪ {〈B, C〉}) ‘D) |
18 | fvres 5343 | . . . 4 ⊢ (D ∈ {D} → ((A ↾ {D}) ‘D) = (A ‘D)) | |
19 | 11, 18 | syl 15 | . . 3 ⊢ (D ∈ V → ((A ↾ {D}) ‘D) = (A ‘D)) |
20 | fvprc 5326 | . . . 4 ⊢ (¬ D ∈ V → ((A ↾ {D}) ‘D) = ∅) | |
21 | fvprc 5326 | . . . 4 ⊢ (¬ D ∈ V → (A ‘D) = ∅) | |
22 | 20, 21 | eqtr4d 2388 | . . 3 ⊢ (¬ D ∈ V → ((A ↾ {D}) ‘D) = (A ‘D)) |
23 | 19, 22 | pm2.61i 156 | . 2 ⊢ ((A ↾ {D}) ‘D) = (A ‘D) |
24 | 10, 17, 23 | 3eqtr3g 2408 | 1 ⊢ (B ≠ D → ((A ∪ {〈B, C〉}) ‘D) = (A ‘D)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1642 ∈ wcel 1710 ≠ wne 2517 Vcvv 2860 ∪ cun 3208 ∅c0 3551 {csn 3738 〈cop 4562 ↾ cres 4775 ‘cfv 4782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-xp 4785 df-res 4789 df-fv 4796 |
This theorem is referenced by: fvpr1 5450 |
Copyright terms: Public domain | W3C validator |