NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  disjsn2 GIF version

Theorem disjsn2 3788
Description: Intersection of distinct singletons is disjoint. (Contributed by NM, 25-May-1998.)
Assertion
Ref Expression
disjsn2 (AB → ({A} ∩ {B}) = )

Proof of Theorem disjsn2
StepHypRef Expression
1 elsni 3758 . . . 4 (B {A} → B = A)
21eqcomd 2358 . . 3 (B {A} → A = B)
32necon3ai 2557 . 2 (AB → ¬ B {A})
4 disjsn 3787 . 2 (({A} ∩ {B}) = ↔ ¬ B {A})
53, 4sylibr 203 1 (AB → ({A} ∩ {B}) = )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1642   wcel 1710  wne 2517  cin 3209  c0 3551  {csn 3738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-dif 3216  df-nul 3552  df-sn 3742
This theorem is referenced by:  difprsn1  3848  diftpsn3  3850  xpsndisj  5050  funprg  5150  funprgOLD  5151
  Copyright terms: Public domain W3C validator