New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > disjsn2 | GIF version |
Description: Intersection of distinct singletons is disjoint. (Contributed by NM, 25-May-1998.) |
Ref | Expression |
---|---|
disjsn2 | ⊢ (A ≠ B → ({A} ∩ {B}) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsni 3758 | . . . 4 ⊢ (B ∈ {A} → B = A) | |
2 | 1 | eqcomd 2358 | . . 3 ⊢ (B ∈ {A} → A = B) |
3 | 2 | necon3ai 2557 | . 2 ⊢ (A ≠ B → ¬ B ∈ {A}) |
4 | disjsn 3787 | . 2 ⊢ (({A} ∩ {B}) = ∅ ↔ ¬ B ∈ {A}) | |
5 | 3, 4 | sylibr 203 | 1 ⊢ (A ≠ B → ({A} ∩ {B}) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1642 ∈ wcel 1710 ≠ wne 2517 ∩ cin 3209 ∅c0 3551 {csn 3738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-dif 3216 df-nul 3552 df-sn 3742 |
This theorem is referenced by: difprsn1 3848 diftpsn3 3850 xpsndisj 5050 funprg 5150 funprgOLD 5151 |
Copyright terms: Public domain | W3C validator |