| Step | Hyp | Ref
| Expression |
| 1 | | elsni 3758 |
. . . . . . . . 9
⊢ (x ∈ {Y} → x =
Y) |
| 2 | 1 | necon3ai 2557 |
. . . . . . . 8
⊢ (x ≠ Y →
¬ x ∈
{Y}) |
| 3 | 2 | ad2antll 709 |
. . . . . . 7
⊢ ((((A ∪ {X}) =
(B ∪ {Y}) ∧ (¬
X ∈
A ∧ ¬
Y ∈
B) ∧
(Y ∈
A ∧
X ∈
B)) ∧
(x ∈
A ∧
x ≠ Y)) → ¬ x ∈ {Y}) |
| 4 | | ssun1 3427 |
. . . . . . . . . . 11
⊢ A ⊆ (A ∪ {X}) |
| 5 | 4 | sseli 3270 |
. . . . . . . . . 10
⊢ (x ∈ A → x ∈ (A ∪
{X})) |
| 6 | 5 | ad2antrl 708 |
. . . . . . . . 9
⊢ ((((A ∪ {X}) =
(B ∪ {Y}) ∧ (¬
X ∈
A ∧ ¬
Y ∈
B) ∧
(Y ∈
A ∧
X ∈
B)) ∧
(x ∈
A ∧
x ≠ Y)) → x
∈ (A
∪ {X})) |
| 7 | | simpl1 958 |
. . . . . . . . 9
⊢ ((((A ∪ {X}) =
(B ∪ {Y}) ∧ (¬
X ∈
A ∧ ¬
Y ∈
B) ∧
(Y ∈
A ∧
X ∈
B)) ∧
(x ∈
A ∧
x ≠ Y)) → (A
∪ {X}) = (B ∪ {Y})) |
| 8 | 6, 7 | eleqtrd 2429 |
. . . . . . . 8
⊢ ((((A ∪ {X}) =
(B ∪ {Y}) ∧ (¬
X ∈
A ∧ ¬
Y ∈
B) ∧
(Y ∈
A ∧
X ∈
B)) ∧
(x ∈
A ∧
x ≠ Y)) → x
∈ (B
∪ {Y})) |
| 9 | | elun 3221 |
. . . . . . . 8
⊢ (x ∈ (B ∪ {Y})
↔ (x ∈ B ∨ x ∈ {Y})) |
| 10 | 8, 9 | sylib 188 |
. . . . . . 7
⊢ ((((A ∪ {X}) =
(B ∪ {Y}) ∧ (¬
X ∈
A ∧ ¬
Y ∈
B) ∧
(Y ∈
A ∧
X ∈
B)) ∧
(x ∈
A ∧
x ≠ Y)) → (x
∈ B ∨ x ∈ {Y})) |
| 11 | | orel2 372 |
. . . . . . 7
⊢ (¬ x ∈ {Y} → ((x
∈ B ∨ x ∈ {Y}) →
x ∈
B)) |
| 12 | 3, 10, 11 | sylc 56 |
. . . . . 6
⊢ ((((A ∪ {X}) =
(B ∪ {Y}) ∧ (¬
X ∈
A ∧ ¬
Y ∈
B) ∧
(Y ∈
A ∧
X ∈
B)) ∧
(x ∈
A ∧
x ≠ Y)) → x
∈ B) |
| 13 | 12 | ex 423 |
. . . . 5
⊢ (((A ∪ {X}) =
(B ∪ {Y}) ∧ (¬
X ∈
A ∧ ¬
Y ∈
B) ∧
(Y ∈
A ∧
X ∈
B)) → ((x ∈ A ∧ x ≠ Y) →
x ∈
B)) |
| 14 | | simp2l 981 |
. . . . . . . 8
⊢ (((A ∪ {X}) =
(B ∪ {Y}) ∧ (¬
X ∈
A ∧ ¬
Y ∈
B) ∧
(Y ∈
A ∧
X ∈
B)) → ¬ X ∈ A) |
| 15 | | eleq1 2413 |
. . . . . . . . 9
⊢ (x = X →
(x ∈
A ↔ X ∈ A)) |
| 16 | 15 | notbid 285 |
. . . . . . . 8
⊢ (x = X →
(¬ x ∈ A ↔
¬ X ∈
A)) |
| 17 | 14, 16 | syl5ibrcom 213 |
. . . . . . 7
⊢ (((A ∪ {X}) =
(B ∪ {Y}) ∧ (¬
X ∈
A ∧ ¬
Y ∈
B) ∧
(Y ∈
A ∧
X ∈
B)) → (x = X →
¬ x ∈
A)) |
| 18 | 17 | necon2ad 2565 |
. . . . . 6
⊢ (((A ∪ {X}) =
(B ∪ {Y}) ∧ (¬
X ∈
A ∧ ¬
Y ∈
B) ∧
(Y ∈
A ∧
X ∈
B)) → (x ∈ A → x ≠
X)) |
| 19 | 18 | adantrd 454 |
. . . . 5
⊢ (((A ∪ {X}) =
(B ∪ {Y}) ∧ (¬
X ∈
A ∧ ¬
Y ∈
B) ∧
(Y ∈
A ∧
X ∈
B)) → ((x ∈ A ∧ x ≠ Y) →
x ≠ X)) |
| 20 | 13, 19 | jcad 519 |
. . . 4
⊢ (((A ∪ {X}) =
(B ∪ {Y}) ∧ (¬
X ∈
A ∧ ¬
Y ∈
B) ∧
(Y ∈
A ∧
X ∈
B)) → ((x ∈ A ∧ x ≠ Y) →
(x ∈
B ∧
x ≠ X))) |
| 21 | | eldifsn 3840 |
. . . 4
⊢ (x ∈ (A ∖ {Y}) ↔ (x
∈ A ∧ x ≠
Y)) |
| 22 | | eldifsn 3840 |
. . . 4
⊢ (x ∈ (B ∖ {X}) ↔ (x
∈ B ∧ x ≠
X)) |
| 23 | 20, 21, 22 | 3imtr4g 261 |
. . 3
⊢ (((A ∪ {X}) =
(B ∪ {Y}) ∧ (¬
X ∈
A ∧ ¬
Y ∈
B) ∧
(Y ∈
A ∧
X ∈
B)) → (x ∈ (A ∖ {Y}) → x
∈ (B
∖ {X}))) |
| 24 | 23 | ssrdv 3279 |
. 2
⊢ (((A ∪ {X}) =
(B ∪ {Y}) ∧ (¬
X ∈
A ∧ ¬
Y ∈
B) ∧
(Y ∈
A ∧
X ∈
B)) → (A ∖ {Y}) ⊆ (B ∖ {X})) |
| 25 | | elsni 3758 |
. . . . . . . . 9
⊢ (x ∈ {X} → x =
X) |
| 26 | 25 | necon3ai 2557 |
. . . . . . . 8
⊢ (x ≠ X →
¬ x ∈
{X}) |
| 27 | 26 | ad2antll 709 |
. . . . . . 7
⊢ ((((A ∪ {X}) =
(B ∪ {Y}) ∧ (¬
X ∈
A ∧ ¬
Y ∈
B) ∧
(Y ∈
A ∧
X ∈
B)) ∧
(x ∈
B ∧
x ≠ X)) → ¬ x ∈ {X}) |
| 28 | | ssun1 3427 |
. . . . . . . . . . 11
⊢ B ⊆ (B ∪ {Y}) |
| 29 | 28 | sseli 3270 |
. . . . . . . . . 10
⊢ (x ∈ B → x ∈ (B ∪
{Y})) |
| 30 | 29 | ad2antrl 708 |
. . . . . . . . 9
⊢ ((((A ∪ {X}) =
(B ∪ {Y}) ∧ (¬
X ∈
A ∧ ¬
Y ∈
B) ∧
(Y ∈
A ∧
X ∈
B)) ∧
(x ∈
B ∧
x ≠ X)) → x
∈ (B
∪ {Y})) |
| 31 | | simpl1 958 |
. . . . . . . . 9
⊢ ((((A ∪ {X}) =
(B ∪ {Y}) ∧ (¬
X ∈
A ∧ ¬
Y ∈
B) ∧
(Y ∈
A ∧
X ∈
B)) ∧
(x ∈
B ∧
x ≠ X)) → (A
∪ {X}) = (B ∪ {Y})) |
| 32 | 30, 31 | eleqtrrd 2430 |
. . . . . . . 8
⊢ ((((A ∪ {X}) =
(B ∪ {Y}) ∧ (¬
X ∈
A ∧ ¬
Y ∈
B) ∧
(Y ∈
A ∧
X ∈
B)) ∧
(x ∈
B ∧
x ≠ X)) → x
∈ (A
∪ {X})) |
| 33 | | elun 3221 |
. . . . . . . 8
⊢ (x ∈ (A ∪ {X})
↔ (x ∈ A ∨ x ∈ {X})) |
| 34 | 32, 33 | sylib 188 |
. . . . . . 7
⊢ ((((A ∪ {X}) =
(B ∪ {Y}) ∧ (¬
X ∈
A ∧ ¬
Y ∈
B) ∧
(Y ∈
A ∧
X ∈
B)) ∧
(x ∈
B ∧
x ≠ X)) → (x
∈ A ∨ x ∈ {X})) |
| 35 | | orel2 372 |
. . . . . . 7
⊢ (¬ x ∈ {X} → ((x
∈ A ∨ x ∈ {X}) →
x ∈
A)) |
| 36 | 27, 34, 35 | sylc 56 |
. . . . . 6
⊢ ((((A ∪ {X}) =
(B ∪ {Y}) ∧ (¬
X ∈
A ∧ ¬
Y ∈
B) ∧
(Y ∈
A ∧
X ∈
B)) ∧
(x ∈
B ∧
x ≠ X)) → x
∈ A) |
| 37 | 36 | ex 423 |
. . . . 5
⊢ (((A ∪ {X}) =
(B ∪ {Y}) ∧ (¬
X ∈
A ∧ ¬
Y ∈
B) ∧
(Y ∈
A ∧
X ∈
B)) → ((x ∈ B ∧ x ≠ X) →
x ∈
A)) |
| 38 | | simp2r 982 |
. . . . . . . 8
⊢ (((A ∪ {X}) =
(B ∪ {Y}) ∧ (¬
X ∈
A ∧ ¬
Y ∈
B) ∧
(Y ∈
A ∧
X ∈
B)) → ¬ Y ∈ B) |
| 39 | | eleq1 2413 |
. . . . . . . . 9
⊢ (x = Y →
(x ∈
B ↔ Y ∈ B)) |
| 40 | 39 | notbid 285 |
. . . . . . . 8
⊢ (x = Y →
(¬ x ∈ B ↔
¬ Y ∈
B)) |
| 41 | 38, 40 | syl5ibrcom 213 |
. . . . . . 7
⊢ (((A ∪ {X}) =
(B ∪ {Y}) ∧ (¬
X ∈
A ∧ ¬
Y ∈
B) ∧
(Y ∈
A ∧
X ∈
B)) → (x = Y →
¬ x ∈
B)) |
| 42 | 41 | necon2ad 2565 |
. . . . . 6
⊢ (((A ∪ {X}) =
(B ∪ {Y}) ∧ (¬
X ∈
A ∧ ¬
Y ∈
B) ∧
(Y ∈
A ∧
X ∈
B)) → (x ∈ B → x ≠
Y)) |
| 43 | 42 | adantrd 454 |
. . . . 5
⊢ (((A ∪ {X}) =
(B ∪ {Y}) ∧ (¬
X ∈
A ∧ ¬
Y ∈
B) ∧
(Y ∈
A ∧
X ∈
B)) → ((x ∈ B ∧ x ≠ X) →
x ≠ Y)) |
| 44 | 37, 43 | jcad 519 |
. . . 4
⊢ (((A ∪ {X}) =
(B ∪ {Y}) ∧ (¬
X ∈
A ∧ ¬
Y ∈
B) ∧
(Y ∈
A ∧
X ∈
B)) → ((x ∈ B ∧ x ≠ X) →
(x ∈
A ∧
x ≠ Y))) |
| 45 | 44, 22, 21 | 3imtr4g 261 |
. . 3
⊢ (((A ∪ {X}) =
(B ∪ {Y}) ∧ (¬
X ∈
A ∧ ¬
Y ∈
B) ∧
(Y ∈
A ∧
X ∈
B)) → (x ∈ (B ∖ {X}) → x
∈ (A
∖ {Y}))) |
| 46 | 45 | ssrdv 3279 |
. 2
⊢ (((A ∪ {X}) =
(B ∪ {Y}) ∧ (¬
X ∈
A ∧ ¬
Y ∈
B) ∧
(Y ∈
A ∧
X ∈
B)) → (B ∖ {X}) ⊆ (A ∖ {Y})) |
| 47 | 24, 46 | eqssd 3290 |
1
⊢ (((A ∪ {X}) =
(B ∪ {Y}) ∧ (¬
X ∈
A ∧ ¬
Y ∈
B) ∧
(Y ∈
A ∧
X ∈
B)) → (A ∖ {Y}) = (B ∖ {X})) |