NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  neeq12i GIF version

Theorem neeq12i 2529
Description: Inference for inequality. (Contributed by NM, 24-Jul-2012.)
Hypotheses
Ref Expression
neeq1i.1 A = B
neeq12i.2 C = D
Assertion
Ref Expression
neeq12i (ACBD)

Proof of Theorem neeq12i
StepHypRef Expression
1 neeq12i.2 . . 3 C = D
21neeq2i 2528 . 2 (ACAD)
3 neeq1i.1 . . 3 A = B
43neeq1i 2527 . 2 (ADBD)
52, 4bitri 240 1 (ACBD)
Colors of variables: wff setvar class
Syntax hints:  wb 176   = wceq 1642  wne 2517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-ex 1542  df-cleq 2346  df-ne 2519
This theorem is referenced by:  3netr3g  2545  3netr4g  2546
  Copyright terms: Public domain W3C validator