| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > neleq12d | GIF version | ||
| Description: Equality theorem for negated membership. (Contributed by FL, 10-Aug-2016.) |
| Ref | Expression |
|---|---|
| neleq12d.1 | ⊢ (φ → A = B) |
| neleq12d.2 | ⊢ (φ → C = D) |
| Ref | Expression |
|---|---|
| neleq12d | ⊢ (φ → (A ∉ C ↔ B ∉ D)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neleq12d.1 | . . 3 ⊢ (φ → A = B) | |
| 2 | neleq1 2608 | . . 3 ⊢ (A = B → (A ∉ C ↔ B ∉ C)) | |
| 3 | 1, 2 | syl 15 | . 2 ⊢ (φ → (A ∉ C ↔ B ∉ C)) |
| 4 | neleq12d.2 | . . 3 ⊢ (φ → C = D) | |
| 5 | neleq2 2609 | . . 3 ⊢ (C = D → (B ∉ C ↔ B ∉ D)) | |
| 6 | 4, 5 | syl 15 | . 2 ⊢ (φ → (B ∉ C ↔ B ∉ D)) |
| 7 | 3, 6 | bitrd 244 | 1 ⊢ (φ → (A ∉ C ↔ B ∉ D)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 = wceq 1642 ∉ wnel 2518 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-cleq 2346 df-clel 2349 df-nel 2520 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |