NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  neleq2 GIF version

Theorem neleq2 2609
Description: Equality theorem for negated membership. (Contributed by NM, 20-Nov-1994.)
Assertion
Ref Expression
neleq2 (A = B → (C AC B))

Proof of Theorem neleq2
StepHypRef Expression
1 eleq2 2414 . . 3 (A = B → (C AC B))
21notbid 285 . 2 (A = B → (¬ C A ↔ ¬ C B))
3 df-nel 2520 . 2 (C A ↔ ¬ C A)
4 df-nel 2520 . 2 (C B ↔ ¬ C B)
52, 3, 43bitr4g 279 1 (A = B → (C AC B))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 176   = wceq 1642   wcel 1710   wnel 2518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-cleq 2346  df-clel 2349  df-nel 2520
This theorem is referenced by:  neleq12d  2610
  Copyright terms: Public domain W3C validator