New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > neleq2 | GIF version |
Description: Equality theorem for negated membership. (Contributed by NM, 20-Nov-1994.) |
Ref | Expression |
---|---|
neleq2 | ⊢ (A = B → (C ∉ A ↔ C ∉ B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2414 | . . 3 ⊢ (A = B → (C ∈ A ↔ C ∈ B)) | |
2 | 1 | notbid 285 | . 2 ⊢ (A = B → (¬ C ∈ A ↔ ¬ C ∈ B)) |
3 | df-nel 2520 | . 2 ⊢ (C ∉ A ↔ ¬ C ∈ A) | |
4 | df-nel 2520 | . 2 ⊢ (C ∉ B ↔ ¬ C ∈ B) | |
5 | 2, 3, 4 | 3bitr4g 279 | 1 ⊢ (A = B → (C ∉ A ↔ C ∉ B)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 = wceq 1642 ∈ wcel 1710 ∉ wnel 2518 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-cleq 2346 df-clel 2349 df-nel 2520 |
This theorem is referenced by: neleq12d 2610 |
Copyright terms: Public domain | W3C validator |