New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > biimpcd | GIF version |
Description: Deduce a commuted implication from a logical equivalence. (Contributed by NM, 3-May-1994.) (Proof shortened by Wolf Lammen, 22-Sep-2013.) |
Ref | Expression |
---|---|
biimpcd.1 | ⊢ (φ → (ψ ↔ χ)) |
Ref | Expression |
---|---|
biimpcd | ⊢ (ψ → (φ → χ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (ψ → ψ) | |
2 | biimpcd.1 | . 2 ⊢ (φ → (ψ ↔ χ)) | |
3 | 1, 2 | syl5ibcom 211 | 1 ⊢ (ψ → (φ → χ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: biimpac 472 3impexpbicom 1367 ax16i 2046 ax16ALT2 2048 nfsb4t 2080 nelneq 2451 nelneq2 2452 nelne1 2605 nelne2 2606 nssne1 3327 nssne2 3328 psssstr 3375 difsn 3845 iununi 4050 nnsucelrlem2 4425 nnsucelr 4428 nndisjeq 4429 sfinltfin 4535 mosubopt 4612 phialllem1 4616 nbrne1 4656 nbrne2 4657 chfnrn 5399 fnasrn 5417 ffnfv 5427 f1elima 5474 enprmaplem3 6078 taddc 6229 nclenn 6249 fnfreclem3 6319 |
Copyright terms: Public domain | W3C validator |