New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > biimpcd | GIF version |
Description: Deduce a commuted implication from a logical equivalence. (Contributed by NM, 3-May-1994.) (Proof shortened by Wolf Lammen, 22-Sep-2013.) |
Ref | Expression |
---|---|
biimpcd.1 | ⊢ (φ → (ψ ↔ χ)) |
Ref | Expression |
---|---|
biimpcd | ⊢ (ψ → (φ → χ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (ψ → ψ) | |
2 | biimpcd.1 | . 2 ⊢ (φ → (ψ ↔ χ)) | |
3 | 1, 2 | syl5ibcom 211 | 1 ⊢ (ψ → (φ → χ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: biimpac 472 3impexpbicom 1367 ax16i 2046 ax16ALT2 2048 nfsb4t 2080 nelneq 2451 nelneq2 2452 nelne1 2606 nelne2 2607 nssne1 3328 nssne2 3329 psssstr 3376 difsn 3846 iununi 4051 nnsucelrlem2 4426 nnsucelr 4429 nndisjeq 4430 sfinltfin 4536 mosubopt 4613 phialllem1 4617 nbrne1 4657 nbrne2 4658 chfnrn 5400 fnasrn 5418 ffnfv 5428 f1elima 5475 enprmaplem3 6079 taddc 6230 nclenn 6250 fnfreclem3 6320 |
Copyright terms: Public domain | W3C validator |