NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  19.23 GIF version

Theorem 19.23 1801
Description: Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.)
Hypothesis
Ref Expression
19.23.1 xψ
Assertion
Ref Expression
19.23 (x(φψ) ↔ (xφψ))

Proof of Theorem 19.23
StepHypRef Expression
1 19.23.1 . 2 xψ
2 19.23t 1800 . 2 (Ⅎxψ → (x(φψ) ↔ (xφψ)))
31, 2ax-mp 5 1 (x(φψ) ↔ (xφψ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176  wal 1540  wex 1541  wnf 1544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-ex 1542  df-nf 1545
This theorem is referenced by:  19.23h  1802  exlimi  1803  exlimd  1806  nf2  1866  19.23v  1891  pm11.53  1893  ax10-16  2190  r19.3rz  3641  ralidm  3653
  Copyright terms: Public domain W3C validator