New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfrmo1 | GIF version |
Description: x is not free in ∃*x ∈ Aφ. (Contributed by NM, 16-Jun-2017.) |
Ref | Expression |
---|---|
nfrmo1 | ⊢ Ⅎx∃*x ∈ A φ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rmo 2623 | . 2 ⊢ (∃*x ∈ A φ ↔ ∃*x(x ∈ A ∧ φ)) | |
2 | nfmo1 2215 | . 2 ⊢ Ⅎx∃*x(x ∈ A ∧ φ) | |
3 | 1, 2 | nfxfr 1570 | 1 ⊢ Ⅎx∃*x ∈ A φ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 358 Ⅎwnf 1544 ∈ wcel 1710 ∃*wmo 2205 ∃*wrmo 2618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-nf 1545 df-eu 2208 df-mo 2209 df-rmo 2623 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |