NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nfrmo1 GIF version

Theorem nfrmo1 2783
Description: x is not free in ∃*x Aφ. (Contributed by NM, 16-Jun-2017.)
Assertion
Ref Expression
nfrmo1 x∃*x A φ

Proof of Theorem nfrmo1
StepHypRef Expression
1 df-rmo 2623 . 2 (∃*x A φ∃*x(x A φ))
2 nfmo1 2215 . 2 x∃*x(x A φ)
31, 2nfxfr 1570 1 x∃*x A φ
Colors of variables: wff setvar class
Syntax hints:   wa 358  wnf 1544   wcel 1710  ∃*wmo 2205  ∃*wrmo 2618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-ex 1542  df-nf 1545  df-eu 2208  df-mo 2209  df-rmo 2623
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator