NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nfreu1 GIF version

Theorem nfreu1 2781
Description: x is not free in ∃!x Aφ. (Contributed by NM, 19-Mar-1997.)
Assertion
Ref Expression
nfreu1 x∃!x A φ

Proof of Theorem nfreu1
StepHypRef Expression
1 df-reu 2621 . 2 (∃!x A φ∃!x(x A φ))
2 nfeu1 2214 . 2 x∃!x(x A φ)
31, 2nfxfr 1570 1 x∃!x A φ
Colors of variables: wff setvar class
Syntax hints:   wa 358  wnf 1544   wcel 1710  ∃!weu 2204  ∃!wreu 2616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-ex 1542  df-nf 1545  df-eu 2208  df-reu 2621
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator