NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nfs1f GIF version

Theorem nfs1f 2030
Description: If x is not free in φ, it is not free in [y / x]φ. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfs1f.1 xφ
Assertion
Ref Expression
nfs1f x[y / x]φ

Proof of Theorem nfs1f
StepHypRef Expression
1 nfs1f.1 . . 3 xφ
21sbf 2026 . 2 ([y / x]φφ)
32, 1nfxfr 1570 1 x[y / x]φ
Colors of variables: wff setvar class
Syntax hints:  wnf 1544  [wsb 1648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator