New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sbequ5 | GIF version |
Description: Substitution does not change an identical variable specifier. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sbequ5 | ⊢ ([w / z]∀x x = y ↔ ∀x x = y) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfae 1954 | . 2 ⊢ Ⅎz∀x x = y | |
2 | 1 | sbf 2026 | 1 ⊢ ([w / z]∀x x = y ↔ ∀x x = y) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∀wal 1540 [wsb 1648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 |
This theorem is referenced by: sbal 2127 |
Copyright terms: Public domain | W3C validator |