New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sbf | GIF version |
Description: Substitution for a variable not free in a wff does not affect it. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 4-Oct-2016.) |
Ref | Expression |
---|---|
sbf.1 | ⊢ Ⅎxφ |
Ref | Expression |
---|---|
sbf | ⊢ ([y / x]φ ↔ φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbf.1 | . 2 ⊢ Ⅎxφ | |
2 | sbft 2025 | . 2 ⊢ (Ⅎxφ → ([y / x]φ ↔ φ)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ([y / x]φ ↔ φ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 Ⅎwnf 1544 [wsb 1648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 |
This theorem is referenced by: sbh 2027 sbf2 2028 sb6x 2029 nfs1f 2030 sbequ5 2031 sbequ6 2032 sbt 2033 sbrim 2067 sblim 2068 sbrbif 2074 sbid2 2084 sbabel 2516 |
Copyright terms: Public domain | W3C validator |