New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfsab | GIF version |
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfsab.1 | ⊢ Ⅎxφ |
Ref | Expression |
---|---|
nfsab | ⊢ Ⅎx z ∈ {y ∣ φ} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfsab.1 | . . . 4 ⊢ Ⅎxφ | |
2 | 1 | nfri 1762 | . . 3 ⊢ (φ → ∀xφ) |
3 | 2 | hbab 2344 | . 2 ⊢ (z ∈ {y ∣ φ} → ∀x z ∈ {y ∣ φ}) |
4 | 3 | nfi 1551 | 1 ⊢ Ⅎx z ∈ {y ∣ φ} |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnf 1544 ∈ wcel 1710 {cab 2339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 |
This theorem is referenced by: nfab 2494 |
Copyright terms: Public domain | W3C validator |