NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nfab GIF version

Theorem nfab 2494
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfab.1 xφ
Assertion
Ref Expression
nfab x{y φ}

Proof of Theorem nfab
Dummy variable z is distinct from all other variables.
StepHypRef Expression
1 nfab.1 . . 3 xφ
21nfsab 2345 . 2 x z {y φ}
32nfci 2480 1 x{y φ}
Colors of variables: wff setvar class
Syntax hints:  wnf 1544  {cab 2339  wnfc 2477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-nfc 2479
This theorem is referenced by:  nfaba1  2495  sbcel12g  3152  sbceqg  3153  nfnin  3229  nfpw  3734  nfpr  3774  nfuni  3898  nfint  3937  intab  3957  nfiun  3996  nfiin  3997  nfiu1  3998  nfii1  3999  nfop  4605  nfopab  4628  nfopab1  4629  nfopab2  4630  nfima  4954  fun11iun  5306  nfoprab1  5547  nfoprab2  5548  nfoprab3  5549  nfoprab  5550
  Copyright terms: Public domain W3C validator