New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfsb4 | GIF version |
Description: A variable not free remains so after substitution with a distinct variable. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 4-Oct-2016.) |
Ref | Expression |
---|---|
nfsb4.1 | ⊢ Ⅎzφ |
Ref | Expression |
---|---|
nfsb4 | ⊢ (¬ ∀z z = y → Ⅎz[y / x]φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfsb4t 2080 | . 2 ⊢ (∀xℲzφ → (¬ ∀z z = y → Ⅎz[y / x]φ)) | |
2 | nfsb4.1 | . 2 ⊢ Ⅎzφ | |
3 | 1, 2 | mpg 1548 | 1 ⊢ (¬ ∀z z = y → Ⅎz[y / x]φ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1540 Ⅎwnf 1544 [wsb 1648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 |
This theorem is referenced by: sbco2 2086 nfsb 2109 sbal1 2126 |
Copyright terms: Public domain | W3C validator |