Proof of Theorem sbal1
Step | Hyp | Ref
| Expression |
1 | | sbequ12 1919 |
. . . . 5
⊢ (y = z →
(∀xφ ↔
[z / y]∀xφ)) |
2 | 1 | sps 1754 |
. . . 4
⊢ (∀y y = z →
(∀xφ ↔
[z / y]∀xφ)) |
3 | | sbequ12 1919 |
. . . . . 6
⊢ (y = z →
(φ ↔ [z / y]φ)) |
4 | 3 | sps 1754 |
. . . . 5
⊢ (∀y y = z →
(φ ↔ [z / y]φ)) |
5 | 4 | dral2 1966 |
. . . 4
⊢ (∀y y = z →
(∀xφ ↔
∀x[z / y]φ)) |
6 | 2, 5 | bitr3d 246 |
. . 3
⊢ (∀y y = z →
([z / y]∀xφ ↔
∀x[z / y]φ)) |
7 | 6 | a1d 22 |
. 2
⊢ (∀y y = z →
(¬ ∀x x = z → ([z /
y]∀xφ ↔ ∀x[z / y]φ))) |
8 | | nfa1 1788 |
. . . . . . . 8
⊢ Ⅎx∀xφ |
9 | 8 | nfsb4 2081 |
. . . . . . 7
⊢ (¬ ∀x x = z →
Ⅎx[z / y]∀xφ) |
10 | 9 | nfrd 1763 |
. . . . . 6
⊢ (¬ ∀x x = z →
([z / y]∀xφ →
∀x[z / y]∀xφ)) |
11 | | sp 1747 |
. . . . . . . 8
⊢ (∀xφ → φ) |
12 | 11 | sbimi 1652 |
. . . . . . 7
⊢ ([z / y]∀xφ → [z / y]φ) |
13 | 12 | alimi 1559 |
. . . . . 6
⊢ (∀x[z / y]∀xφ → ∀x[z / y]φ) |
14 | 10, 13 | syl6 29 |
. . . . 5
⊢ (¬ ∀x x = z →
([z / y]∀xφ →
∀x[z / y]φ)) |
15 | 14 | adantl 452 |
. . . 4
⊢ ((¬ ∀y y = z ∧ ¬ ∀x x = z) →
([z / y]∀xφ →
∀x[z / y]φ)) |
16 | | sb4 2053 |
. . . . . . . 8
⊢ (¬ ∀y y = z →
([z / y]φ →
∀y(y = z → φ))) |
17 | 16 | al2imi 1561 |
. . . . . . 7
⊢ (∀x ¬
∀y
y = z
→ (∀x[z / y]φ →
∀x∀y(y = z →
φ))) |
18 | 17 | hbnaes 1957 |
. . . . . 6
⊢ (¬ ∀y y = z →
(∀x[z / y]φ →
∀x∀y(y = z →
φ))) |
19 | | ax-7 1734 |
. . . . . 6
⊢ (∀x∀y(y = z →
φ) → ∀y∀x(y = z →
φ)) |
20 | 18, 19 | syl6 29 |
. . . . 5
⊢ (¬ ∀y y = z →
(∀x[z / y]φ →
∀y∀x(y = z →
φ))) |
21 | | dveeq2 1940 |
. . . . . . . . 9
⊢ (¬ ∀x x = z →
(y = z
→ ∀x y = z)) |
22 | | alim 1558 |
. . . . . . . . 9
⊢ (∀x(y = z →
φ) → (∀x y = z →
∀xφ)) |
23 | 21, 22 | syl9 66 |
. . . . . . . 8
⊢ (¬ ∀x x = z →
(∀x(y = z → φ)
→ (y = z → ∀xφ))) |
24 | 23 | al2imi 1561 |
. . . . . . 7
⊢ (∀y ¬
∀x
x = z
→ (∀y∀x(y = z → φ)
→ ∀y(y = z → ∀xφ))) |
25 | | sb2 2023 |
. . . . . . 7
⊢ (∀y(y = z →
∀xφ) → [z / y]∀xφ) |
26 | 24, 25 | syl6 29 |
. . . . . 6
⊢ (∀y ¬
∀x
x = z
→ (∀y∀x(y = z → φ)
→ [z / y]∀xφ)) |
27 | 26 | hbnaes 1957 |
. . . . 5
⊢ (¬ ∀x x = z →
(∀y∀x(y = z → φ)
→ [z / y]∀xφ)) |
28 | 20, 27 | sylan9 638 |
. . . 4
⊢ ((¬ ∀y y = z ∧ ¬ ∀x x = z) →
(∀x[z / y]φ →
[z / y]∀xφ)) |
29 | 15, 28 | impbid 183 |
. . 3
⊢ ((¬ ∀y y = z ∧ ¬ ∀x x = z) →
([z / y]∀xφ ↔
∀x[z / y]φ)) |
30 | 29 | ex 423 |
. 2
⊢ (¬ ∀y y = z →
(¬ ∀x x = z → ([z /
y]∀xφ ↔ ∀x[z / y]φ))) |
31 | 7, 30 | pm2.61i 156 |
1
⊢ (¬ ∀x x = z →
([z / y]∀xφ ↔
∀x[z / y]φ)) |