New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfsb | GIF version |
Description: If z is not free in φ, it is not free in [y / x]φ when y and z are distinct. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfsb.1 | ⊢ Ⅎzφ |
Ref | Expression |
---|---|
nfsb | ⊢ Ⅎz[y / x]φ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | a16nf 2051 | . 2 ⊢ (∀z z = y → Ⅎz[y / x]φ) | |
2 | nfsb.1 | . . 3 ⊢ Ⅎzφ | |
3 | 2 | nfsb4 2081 | . 2 ⊢ (¬ ∀z z = y → Ⅎz[y / x]φ) |
4 | 1, 3 | pm2.61i 156 | 1 ⊢ Ⅎz[y / x]φ |
Colors of variables: wff setvar class |
Syntax hints: ∀wal 1540 Ⅎwnf 1544 [wsb 1648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 |
This theorem is referenced by: hbsb 2110 2sb5rf 2117 2sb6rf 2118 sb10f 2122 sb8eu 2222 2mo 2282 2eu6 2289 cbvab 2472 cbvralf 2830 cbvreu 2834 cbvralsv 2847 cbvrexsv 2848 cbvrab 2858 cbvreucsf 3201 cbvrabcsf 3202 cbviota 4345 sb8iota 4347 cbvopab1 4633 ralxpf 4828 cbvmpt 5677 |
Copyright terms: Public domain | W3C validator |