New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nic-mpALT | GIF version |
Description: A direct proof of nic-mp 1436. (Contributed by NM, 30-Dec-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nic-jmin | ⊢ φ |
nic-jmaj | ⊢ (φ ⊼ (χ ⊼ ψ)) |
Ref | Expression |
---|---|
nic-mpALT | ⊢ ψ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nic-jmin | . 2 ⊢ φ | |
2 | nic-jmaj | . . . . 5 ⊢ (φ ⊼ (χ ⊼ ψ)) | |
3 | df-nan 1288 | . . . . . 6 ⊢ ((φ ⊼ (χ ⊼ ψ)) ↔ ¬ (φ ∧ (χ ⊼ ψ))) | |
4 | df-nan 1288 | . . . . . . 7 ⊢ ((χ ⊼ ψ) ↔ ¬ (χ ∧ ψ)) | |
5 | 4 | anbi2i 675 | . . . . . 6 ⊢ ((φ ∧ (χ ⊼ ψ)) ↔ (φ ∧ ¬ (χ ∧ ψ))) |
6 | 3, 5 | xchbinx 301 | . . . . 5 ⊢ ((φ ⊼ (χ ⊼ ψ)) ↔ ¬ (φ ∧ ¬ (χ ∧ ψ))) |
7 | 2, 6 | mpbi 199 | . . . 4 ⊢ ¬ (φ ∧ ¬ (χ ∧ ψ)) |
8 | iman 413 | . . . 4 ⊢ ((φ → (χ ∧ ψ)) ↔ ¬ (φ ∧ ¬ (χ ∧ ψ))) | |
9 | 7, 8 | mpbir 200 | . . 3 ⊢ (φ → (χ ∧ ψ)) |
10 | 9 | simprd 449 | . 2 ⊢ (φ → ψ) |
11 | 1, 10 | ax-mp 5 | 1 ⊢ ψ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 358 ⊼ wnan 1287 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-nan 1288 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |