New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nineq2 | GIF version |
Description: Equality law for anti-intersection. (Contributed by SF, 11-Jan-2015.) |
Ref | Expression |
---|---|
nineq2 | ⊢ (A = B → (C ⩃ A) = (C ⩃ B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nineq1 3235 | . 2 ⊢ (A = B → (A ⩃ C) = (B ⩃ C)) | |
2 | nincom 3227 | . 2 ⊢ (A ⩃ C) = (C ⩃ A) | |
3 | nincom 3227 | . 2 ⊢ (B ⩃ C) = (C ⩃ B) | |
4 | 1, 2, 3 | 3eqtr3g 2408 | 1 ⊢ (A = B → (C ⩃ A) = (C ⩃ B)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 ⩃ cnin 3205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 |
This theorem is referenced by: nineq12 3237 nineq2i 3239 nineq2d 3242 ninexg 4098 |
Copyright terms: Public domain | W3C validator |