![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > 3eqtr3g | GIF version |
Description: A chained equality inference, useful for converting from definitions. (Contributed by NM, 15-Nov-1994.) |
Ref | Expression |
---|---|
3eqtr3g.1 | ⊢ (φ → A = B) |
3eqtr3g.2 | ⊢ A = C |
3eqtr3g.3 | ⊢ B = D |
Ref | Expression |
---|---|
3eqtr3g | ⊢ (φ → C = D) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr3g.2 | . . 3 ⊢ A = C | |
2 | 3eqtr3g.1 | . . 3 ⊢ (φ → A = B) | |
3 | 1, 2 | syl5eqr 2399 | . 2 ⊢ (φ → C = B) |
4 | 3eqtr3g.3 | . 2 ⊢ B = D | |
5 | 3, 4 | syl6eq 2401 | 1 ⊢ (φ → C = D) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-cleq 2346 |
This theorem is referenced by: csbnest1g 3188 nineq2 3235 compleqb 3543 adj11 3889 pw1eqadj 4332 tfindi 4496 opth 4602 xpid11 4926 cnveqb 5063 cores2 5091 fvunsn 5444 nchoicelem1 6289 |
Copyright terms: Public domain | W3C validator |