NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  3eqtr3g GIF version

Theorem 3eqtr3g 2408
Description: A chained equality inference, useful for converting from definitions. (Contributed by NM, 15-Nov-1994.)
Hypotheses
Ref Expression
3eqtr3g.1 (φA = B)
3eqtr3g.2 A = C
3eqtr3g.3 B = D
Assertion
Ref Expression
3eqtr3g (φC = D)

Proof of Theorem 3eqtr3g
StepHypRef Expression
1 3eqtr3g.2 . . 3 A = C
2 3eqtr3g.1 . . 3 (φA = B)
31, 2syl5eqr 2399 . 2 (φC = B)
4 3eqtr3g.3 . 2 B = D
53, 4syl6eq 2401 1 (φC = D)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-ex 1542  df-cleq 2346
This theorem is referenced by:  csbnest1g  3189  nineq2  3236  compleqb  3544  adj11  3890  pw1eqadj  4333  tfindi  4497  opth  4603  xpid11  4927  cnveqb  5064  cores2  5092  fvunsn  5445  nchoicelem1  6290
  Copyright terms: Public domain W3C validator