Step | Hyp | Ref
| Expression |
1 | | nineq1 3235 |
. . 3
⊢ (x = A →
(x ⩃ y) = (A ⩃
y)) |
2 | 1 | eleq1d 2419 |
. 2
⊢ (x = A →
((x ⩃ y) ∈ V ↔
(A ⩃ y) ∈
V)) |
3 | | nineq2 3236 |
. . 3
⊢ (y = B →
(A ⩃ y) = (A ⩃
B)) |
4 | 3 | eleq1d 2419 |
. 2
⊢ (y = B →
((A ⩃ y) ∈ V ↔
(A ⩃ B) ∈
V)) |
5 | | ax-nin 4079 |
. . 3
⊢ ∃z∀w(w ∈ z ↔ (w
∈ x ⊼ w ∈ y)) |
6 | | isset 2864 |
. . . 4
⊢ ((x ⩃ y)
∈ V ↔ ∃z z = (x ⩃
y)) |
7 | | dfcleq 2347 |
. . . . . 6
⊢ (z = (x ⩃
y) ↔ ∀w(w ∈ z ↔ w ∈ (x ⩃
y))) |
8 | | vex 2863 |
. . . . . . . . 9
⊢ w ∈
V |
9 | 8 | elnin 3225 |
. . . . . . . 8
⊢ (w ∈ (x ⩃ y)
↔ (w ∈ x ⊼ w ∈ y)) |
10 | 9 | bibi2i 304 |
. . . . . . 7
⊢ ((w ∈ z ↔ w ∈ (x ⩃
y)) ↔ (w ∈ z ↔ (w
∈ x ⊼ w ∈ y))) |
11 | 10 | albii 1566 |
. . . . . 6
⊢ (∀w(w ∈ z ↔ w ∈ (x ⩃
y)) ↔ ∀w(w ∈ z ↔ (w
∈ x ⊼ w ∈ y))) |
12 | 7, 11 | bitri 240 |
. . . . 5
⊢ (z = (x ⩃
y) ↔ ∀w(w ∈ z ↔ (w
∈ x ⊼ w ∈ y))) |
13 | 12 | exbii 1582 |
. . . 4
⊢ (∃z z = (x ⩃
y) ↔ ∃z∀w(w ∈ z ↔ (w
∈ x ⊼ w ∈ y))) |
14 | 6, 13 | bitri 240 |
. . 3
⊢ ((x ⩃ y)
∈ V ↔ ∃z∀w(w ∈ z ↔ (w
∈ x ⊼ w ∈ y))) |
15 | 5, 14 | mpbir 200 |
. 2
⊢ (x ⩃ y)
∈ V |
16 | 2, 4, 15 | vtocl2g 2919 |
1
⊢ ((A ∈ V ∧ B ∈ W) → (A
⩃ B) ∈ V) |