![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > ninexg | GIF version |
Description: The anti-intersection of two sets is a set. (Contributed by SF, 12-Jan-2015.) |
Ref | Expression |
---|---|
ninexg | ⊢ ((A ∈ V ∧ B ∈ W) → (A ⩃ B) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nineq1 3235 | . . 3 ⊢ (x = A → (x ⩃ y) = (A ⩃ y)) | |
2 | 1 | eleq1d 2419 | . 2 ⊢ (x = A → ((x ⩃ y) ∈ V ↔ (A ⩃ y) ∈ V)) |
3 | nineq2 3236 | . . 3 ⊢ (y = B → (A ⩃ y) = (A ⩃ B)) | |
4 | 3 | eleq1d 2419 | . 2 ⊢ (y = B → ((A ⩃ y) ∈ V ↔ (A ⩃ B) ∈ V)) |
5 | ax-nin 4079 | . . 3 ⊢ ∃z∀w(w ∈ z ↔ (w ∈ x ⊼ w ∈ y)) | |
6 | isset 2864 | . . . 4 ⊢ ((x ⩃ y) ∈ V ↔ ∃z z = (x ⩃ y)) | |
7 | dfcleq 2347 | . . . . . 6 ⊢ (z = (x ⩃ y) ↔ ∀w(w ∈ z ↔ w ∈ (x ⩃ y))) | |
8 | vex 2863 | . . . . . . . . 9 ⊢ w ∈ V | |
9 | 8 | elnin 3225 | . . . . . . . 8 ⊢ (w ∈ (x ⩃ y) ↔ (w ∈ x ⊼ w ∈ y)) |
10 | 9 | bibi2i 304 | . . . . . . 7 ⊢ ((w ∈ z ↔ w ∈ (x ⩃ y)) ↔ (w ∈ z ↔ (w ∈ x ⊼ w ∈ y))) |
11 | 10 | albii 1566 | . . . . . 6 ⊢ (∀w(w ∈ z ↔ w ∈ (x ⩃ y)) ↔ ∀w(w ∈ z ↔ (w ∈ x ⊼ w ∈ y))) |
12 | 7, 11 | bitri 240 | . . . . 5 ⊢ (z = (x ⩃ y) ↔ ∀w(w ∈ z ↔ (w ∈ x ⊼ w ∈ y))) |
13 | 12 | exbii 1582 | . . . 4 ⊢ (∃z z = (x ⩃ y) ↔ ∃z∀w(w ∈ z ↔ (w ∈ x ⊼ w ∈ y))) |
14 | 6, 13 | bitri 240 | . . 3 ⊢ ((x ⩃ y) ∈ V ↔ ∃z∀w(w ∈ z ↔ (w ∈ x ⊼ w ∈ y))) |
15 | 5, 14 | mpbir 200 | . 2 ⊢ (x ⩃ y) ∈ V |
16 | 2, 4, 15 | vtocl2g 2919 | 1 ⊢ ((A ∈ V ∧ B ∈ W) → (A ⩃ B) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ⊼ wnan 1287 ∀wal 1540 ∃wex 1541 = wceq 1642 ∈ wcel 1710 Vcvv 2860 ⩃ cnin 3205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 |
This theorem is referenced by: ninex 4099 complexg 4100 inexg 4101 unexg 4102 |
Copyright terms: Public domain | W3C validator |