New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nineq1 | GIF version |
Description: Equality law for anti-intersection. (Contributed by SF, 11-Jan-2015.) |
Ref | Expression |
---|---|
nineq1 | ⊢ (A = B → (A ⩃ C) = (B ⩃ C)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2414 | . . . 4 ⊢ (A = B → (x ∈ A ↔ x ∈ B)) | |
2 | 1 | nanbi1d 1301 | . . 3 ⊢ (A = B → ((x ∈ A ⊼ x ∈ C) ↔ (x ∈ B ⊼ x ∈ C))) |
3 | 2 | abbidv 2468 | . 2 ⊢ (A = B → {x ∣ (x ∈ A ⊼ x ∈ C)} = {x ∣ (x ∈ B ⊼ x ∈ C)}) |
4 | df-nin 3212 | . 2 ⊢ (A ⩃ C) = {x ∣ (x ∈ A ⊼ x ∈ C)} | |
5 | df-nin 3212 | . 2 ⊢ (B ⩃ C) = {x ∣ (x ∈ B ⊼ x ∈ C)} | |
6 | 3, 4, 5 | 3eqtr4g 2410 | 1 ⊢ (A = B → (A ⩃ C) = (B ⩃ C)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊼ wnan 1287 = wceq 1642 ∈ wcel 1710 {cab 2339 ⩃ cnin 3205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nin 3212 |
This theorem is referenced by: nineq2 3236 nineq12 3237 nineq1i 3238 nineq1d 3241 difeq1 3247 ninexg 4098 |
Copyright terms: Public domain | W3C validator |