New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > df-pss | GIF version |
Description: Define proper subclass relationship between two classes. Definition 5.9 of [TakeutiZaring] p. 17. For example, { 1 , 2 } ⊊ { 1 , 2 , 3 } (ex-pss in set.mm). Note that ¬ A ⊊ A (proved in pssirr 3370). Contrast this relationship with the relationship A ⊆ B (as defined in df-ss 3260). Other possible definitions are given by dfpss2 3355 and dfpss3 3356. (Contributed by NM, 7-Feb-1996.) |
Ref | Expression |
---|---|
df-pss | ⊢ (A ⊊ B ↔ (A ⊆ B ∧ A ≠ B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class A | |
2 | cB | . . 3 class B | |
3 | 1, 2 | wpss 3259 | . 2 wff A ⊊ B |
4 | 1, 2 | wss 3258 | . . 3 wff A ⊆ B |
5 | 1, 2 | wne 2517 | . . 3 wff A ≠ B |
6 | 4, 5 | wa 358 | . 2 wff (A ⊆ B ∧ A ≠ B) |
7 | 3, 6 | wb 176 | 1 wff (A ⊊ B ↔ (A ⊆ B ∧ A ≠ B)) |
Colors of variables: wff setvar class |
This definition is referenced by: dfpss2 3355 psseq1 3357 psseq2 3358 pssss 3365 pssne 3366 nssinpss 3488 0pss 3589 pssdif 3613 difsnpss 3852 sfinltfin 4536 |
Copyright terms: Public domain | W3C validator |