New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eqss | GIF version |
Description: The subclass relationship is antisymmetric. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqss | ⊢ (A = B ↔ (A ⊆ B ∧ B ⊆ A)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albiim 1611 | . 2 ⊢ (∀x(x ∈ A ↔ x ∈ B) ↔ (∀x(x ∈ A → x ∈ B) ∧ ∀x(x ∈ B → x ∈ A))) | |
2 | dfcleq 2347 | . 2 ⊢ (A = B ↔ ∀x(x ∈ A ↔ x ∈ B)) | |
3 | dfss2 3262 | . . 3 ⊢ (A ⊆ B ↔ ∀x(x ∈ A → x ∈ B)) | |
4 | dfss2 3262 | . . 3 ⊢ (B ⊆ A ↔ ∀x(x ∈ B → x ∈ A)) | |
5 | 3, 4 | anbi12i 678 | . 2 ⊢ ((A ⊆ B ∧ B ⊆ A) ↔ (∀x(x ∈ A → x ∈ B) ∧ ∀x(x ∈ B → x ∈ A))) |
6 | 1, 2, 5 | 3bitr4i 268 | 1 ⊢ (A = B ↔ (A ⊆ B ∧ B ⊆ A)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∀wal 1540 = wceq 1642 ∈ wcel 1710 ⊆ wss 3257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-ss 3259 |
This theorem is referenced by: eqssi 3288 eqssd 3289 sseq1 3292 sseq2 3293 eqimss 3323 dfpss3 3355 uneqin 3506 ss0b 3580 vss 3587 pssdifn0 3611 pwpw0 3855 sssn 3864 ssunsn 3866 pwsnALT 3882 unidif 3923 ssunieq 3924 uniintsn 3963 iuneq1 3982 iuneq2 3985 iunxdif2 4014 ssofeq 4077 dfidk2 4313 sfinltfin 4535 eqrel 4845 eqopr 4847 coeq1 4874 coeq2 4875 cnveq 4886 dmeq 4907 xp11 5056 ssrnres 5059 funeq 5127 fnres 5199 eqfnfv3 5394 fconst4 5458 dfid4 5503 ssetpov 5944 |
Copyright terms: Public domain | W3C validator |