New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eqss | GIF version |
Description: The subclass relationship is antisymmetric. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqss | ⊢ (A = B ↔ (A ⊆ B ∧ B ⊆ A)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albiim 1611 | . 2 ⊢ (∀x(x ∈ A ↔ x ∈ B) ↔ (∀x(x ∈ A → x ∈ B) ∧ ∀x(x ∈ B → x ∈ A))) | |
2 | dfcleq 2347 | . 2 ⊢ (A = B ↔ ∀x(x ∈ A ↔ x ∈ B)) | |
3 | dfss2 3263 | . . 3 ⊢ (A ⊆ B ↔ ∀x(x ∈ A → x ∈ B)) | |
4 | dfss2 3263 | . . 3 ⊢ (B ⊆ A ↔ ∀x(x ∈ B → x ∈ A)) | |
5 | 3, 4 | anbi12i 678 | . 2 ⊢ ((A ⊆ B ∧ B ⊆ A) ↔ (∀x(x ∈ A → x ∈ B) ∧ ∀x(x ∈ B → x ∈ A))) |
6 | 1, 2, 5 | 3bitr4i 268 | 1 ⊢ (A = B ↔ (A ⊆ B ∧ B ⊆ A)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∀wal 1540 = wceq 1642 ∈ wcel 1710 ⊆ wss 3258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 |
This theorem is referenced by: eqssi 3289 eqssd 3290 sseq1 3293 sseq2 3294 eqimss 3324 dfpss3 3356 uneqin 3507 ss0b 3581 vss 3588 pssdifn0 3612 pwpw0 3856 sssn 3865 ssunsn 3867 pwsnALT 3883 unidif 3924 ssunieq 3925 uniintsn 3964 iuneq1 3983 iuneq2 3986 iunxdif2 4015 ssofeq 4078 dfidk2 4314 sfinltfin 4536 eqrel 4846 eqopr 4848 coeq1 4875 coeq2 4876 cnveq 4887 dmeq 4908 xp11 5057 ssrnres 5060 funeq 5128 fnres 5200 eqfnfv3 5395 fconst4 5459 dfid4 5504 ssetpov 5945 |
Copyright terms: Public domain | W3C validator |