NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  dfpss2 GIF version

Theorem dfpss2 3355
Description: Alternate definition of proper subclass. (Contributed by NM, 7-Feb-1996.)
Assertion
Ref Expression
dfpss2 (AB ↔ (A B ¬ A = B))

Proof of Theorem dfpss2
StepHypRef Expression
1 df-pss 3262 . 2 (AB ↔ (A B AB))
2 df-ne 2519 . . 3 (AB ↔ ¬ A = B)
32anbi2i 675 . 2 ((A B AB) ↔ (A B ¬ A = B))
41, 3bitri 240 1 (AB ↔ (A B ¬ A = B))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 176   wa 358   = wceq 1642  wne 2517   wss 3258  wpss 3259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-ne 2519  df-pss 3262
This theorem is referenced by:  dfpss3  3356  sspss  3369  psstr  3374  npss  3380  pssv  3591  disj4  3600  ssnelpss  3614  sfinltfin  4536
  Copyright terms: Public domain W3C validator