NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  psssstrd GIF version

Theorem psssstrd 3379
Description: Transitivity involving subclass and proper subclass inclusion. Deduction form of psssstr 3376. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
psssstrd.1 (φAB)
psssstrd.2 (φB C)
Assertion
Ref Expression
psssstrd (φAC)

Proof of Theorem psssstrd
StepHypRef Expression
1 psssstrd.1 . 2 (φAB)
2 psssstrd.2 . 2 (φB C)
3 psssstr 3376 . 2 ((AB B C) → AC)
41, 2, 3syl2anc 642 1 (φAC)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wss 3258  wpss 3259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-ss 3260  df-pss 3262
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator