New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > oveqi | GIF version |
Description: Equality inference for operation value. (Contributed by set.mm contributors, 24-Nov-2007.) |
Ref | Expression |
---|---|
oveq1i.1 | ⊢ A = B |
Ref | Expression |
---|---|
oveqi | ⊢ (CAD) = (CBD) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1i.1 | . 2 ⊢ A = B | |
2 | oveq 5530 | . 2 ⊢ (A = B → (CAD) = (CBD)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (CAD) = (CBD) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1642 (class class class)co 5526 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rex 2621 df-uni 3893 df-iota 4340 df-br 4641 df-fv 4796 df-ov 5527 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |