NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  oveq GIF version

Theorem oveq 5530
Description: Equality theorem for operation value. (Contributed by set.mm contributors, 28-Feb-1995.)
Assertion
Ref Expression
oveq (F = G → (AFB) = (AGB))

Proof of Theorem oveq
StepHypRef Expression
1 fveq1 5328 . 2 (F = G → (FA, B) = (GA, B))
2 df-ov 5527 . 2 (AFB) = (FA, B)
3 df-ov 5527 . 2 (AGB) = (GA, B)
41, 2, 33eqtr4g 2410 1 (F = G → (AFB) = (AGB))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1642  cop 4562  cfv 4782  (class class class)co 5526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-rex 2621  df-uni 3893  df-iota 4340  df-br 4641  df-fv 4796  df-ov 5527
This theorem is referenced by:  oveqi  5537  oveqd  5540
  Copyright terms: Public domain W3C validator