New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 0ss | GIF version |
Description: The null set is a subset of any class. Part of Exercise 1 of [TakeutiZaring] p. 22. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
0ss | ⊢ ∅ ⊆ A |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 3555 | . . 3 ⊢ ¬ x ∈ ∅ | |
2 | 1 | pm2.21i 123 | . 2 ⊢ (x ∈ ∅ → x ∈ A) |
3 | 2 | ssriv 3278 | 1 ⊢ ∅ ⊆ A |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 1710 ⊆ wss 3258 ∅c0 3551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-dif 3216 df-ss 3260 df-nul 3552 |
This theorem is referenced by: ss0b 3581 0pss 3589 npss0 3590 ssdifeq0 3633 pwpw0 3856 sssn 3865 sspr 3870 sstp 3871 pwsnALT 3883 uni0 3919 int0el 3958 iotassuni 4356 0ima 5015 dmxpss 5053 dmsnopss 5068 fun0 5155 f0 5249 fvmptss 5706 fvmptss2 5726 clos10 5888 mapsspm 6022 mapsspw 6023 map0e 6024 lec0cg 6199 0lt1c 6259 frecxp 6315 |
Copyright terms: Public domain | W3C validator |