| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > r19.2zb | GIF version | ||
| Description: A response to the notion that the condition A ≠ ∅ can be removed in r19.2z 3640. Interestingly enough, φ does not figure in the left-hand side. (Contributed by Jeff Hankins, 24-Aug-2009.) |
| Ref | Expression |
|---|---|
| r19.2zb | ⊢ (A ≠ ∅ ↔ (∀x ∈ A φ → ∃x ∈ A φ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.2z 3640 | . . 3 ⊢ ((A ≠ ∅ ∧ ∀x ∈ A φ) → ∃x ∈ A φ) | |
| 2 | 1 | ex 423 | . 2 ⊢ (A ≠ ∅ → (∀x ∈ A φ → ∃x ∈ A φ)) |
| 3 | noel 3555 | . . . . . . 7 ⊢ ¬ x ∈ ∅ | |
| 4 | 3 | pm2.21i 123 | . . . . . 6 ⊢ (x ∈ ∅ → φ) |
| 5 | 4 | rgen 2680 | . . . . 5 ⊢ ∀x ∈ ∅ φ |
| 6 | raleq 2808 | . . . . 5 ⊢ (A = ∅ → (∀x ∈ A φ ↔ ∀x ∈ ∅ φ)) | |
| 7 | 5, 6 | mpbiri 224 | . . . 4 ⊢ (A = ∅ → ∀x ∈ A φ) |
| 8 | 7 | necon3bi 2558 | . . 3 ⊢ (¬ ∀x ∈ A φ → A ≠ ∅) |
| 9 | exsimpl 1592 | . . . 4 ⊢ (∃x(x ∈ A ∧ φ) → ∃x x ∈ A) | |
| 10 | df-rex 2621 | . . . 4 ⊢ (∃x ∈ A φ ↔ ∃x(x ∈ A ∧ φ)) | |
| 11 | n0 3560 | . . . 4 ⊢ (A ≠ ∅ ↔ ∃x x ∈ A) | |
| 12 | 9, 10, 11 | 3imtr4i 257 | . . 3 ⊢ (∃x ∈ A φ → A ≠ ∅) |
| 13 | 8, 12 | ja 153 | . 2 ⊢ ((∀x ∈ A φ → ∃x ∈ A φ) → A ≠ ∅) |
| 14 | 2, 13 | impbii 180 | 1 ⊢ (A ≠ ∅ ↔ (∀x ∈ A φ → ∃x ∈ A φ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∃wex 1541 = wceq 1642 ∈ wcel 1710 ≠ wne 2517 ∀wral 2615 ∃wrex 2616 ∅c0 3551 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-dif 3216 df-nul 3552 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |