New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  ifeq2da GIF version

Theorem ifeq2da 3688
 Description: Conditional equality. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypothesis
Ref Expression
ifeq2da.1 ((φ ¬ ψ) → A = B)
Assertion
Ref Expression
ifeq2da (φ → if(ψ, C, A) = if(ψ, C, B))

Proof of Theorem ifeq2da
StepHypRef Expression
1 iftrue 3668 . . . 4 (ψ → if(ψ, C, A) = C)
2 iftrue 3668 . . . 4 (ψ → if(ψ, C, B) = C)
31, 2eqtr4d 2388 . . 3 (ψ → if(ψ, C, A) = if(ψ, C, B))
43adantl 452 . 2 ((φ ψ) → if(ψ, C, A) = if(ψ, C, B))
5 ifeq2da.1 . . 3 ((φ ¬ ψ) → A = B)
65ifeq2d 3677 . 2 ((φ ¬ ψ) → if(ψ, C, A) = if(ψ, C, B))
74, 6pm2.61dan 766 1 (φ → if(ψ, C, A) = if(ψ, C, B))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 358   = wceq 1642   ifcif 3662 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-rab 2623  df-v 2861  df-nin 3211  df-compl 3212  df-un 3214  df-if 3663 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator