New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ifeq2da | GIF version |
Description: Conditional equality. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
ifeq2da.1 | ⊢ ((φ ∧ ¬ ψ) → A = B) |
Ref | Expression |
---|---|
ifeq2da | ⊢ (φ → if(ψ, C, A) = if(ψ, C, B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftrue 3669 | . . . 4 ⊢ (ψ → if(ψ, C, A) = C) | |
2 | iftrue 3669 | . . . 4 ⊢ (ψ → if(ψ, C, B) = C) | |
3 | 1, 2 | eqtr4d 2388 | . . 3 ⊢ (ψ → if(ψ, C, A) = if(ψ, C, B)) |
4 | 3 | adantl 452 | . 2 ⊢ ((φ ∧ ψ) → if(ψ, C, A) = if(ψ, C, B)) |
5 | ifeq2da.1 | . . 3 ⊢ ((φ ∧ ¬ ψ) → A = B) | |
6 | 5 | ifeq2d 3678 | . 2 ⊢ ((φ ∧ ¬ ψ) → if(ψ, C, A) = if(ψ, C, B)) |
7 | 4, 6 | pm2.61dan 766 | 1 ⊢ (φ → if(ψ, C, A) = if(ψ, C, B)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 358 = wceq 1642 ifcif 3663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rab 2624 df-v 2862 df-nin 3212 df-compl 3213 df-un 3215 df-if 3664 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |