NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  fvmpti GIF version

Theorem fvmpti 5700
Description: Value of a function given in maps-to notation. (Contributed by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
fvmptg.1 (x = AB = C)
fvmptg.2 F = (x D B)
Assertion
Ref Expression
fvmpti (A D → (FA) = ( I ‘C))
Distinct variable groups:   x,A   x,C   x,D
Allowed substitution hints:   B(x)   F(x)

Proof of Theorem fvmpti
StepHypRef Expression
1 fvmptg.1 . . . 4 (x = AB = C)
2 fvmptg.2 . . . 4 F = (x D B)
31, 2fvmptg 5699 . . 3 ((A D C V) → (FA) = C)
4 fvi 5443 . . . 4 (C V → ( I ‘C) = C)
54adantl 452 . . 3 ((A D C V) → ( I ‘C) = C)
63, 5eqtr4d 2388 . 2 ((A D C V) → (FA) = ( I ‘C))
71eleq1d 2419 . . . . . . . 8 (x = A → (B V ↔ C V))
82dmmpt 5684 . . . . . . . 8 dom F = {x D B V}
97, 8elrab2 2997 . . . . . . 7 (A dom F ↔ (A D C V))
109baib 871 . . . . . 6 (A D → (A dom FC V))
1110notbid 285 . . . . 5 (A D → (¬ A dom F ↔ ¬ C V))
12 ndmfv 5350 . . . . 5 A dom F → (FA) = )
1311, 12syl6bir 220 . . . 4 (A D → (¬ C V → (FA) = ))
1413imp 418 . . 3 ((A D ¬ C V) → (FA) = )
15 fvprc 5326 . . . 4 C V → ( I ‘C) = )
1615adantl 452 . . 3 ((A D ¬ C V) → ( I ‘C) = )
1714, 16eqtr4d 2388 . 2 ((A D ¬ C V) → (FA) = ( I ‘C))
186, 17pm2.61dan 766 1 (A D → (FA) = ( I ‘C))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   wa 358   = wceq 1642   wcel 1710  Vcvv 2860  c0 3551   I cid 4764  dom cdm 4773  cfv 4782   cmpt 5652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-co 4727  df-ima 4728  df-id 4768  df-cnv 4786  df-rn 4787  df-dm 4788  df-fun 4790  df-fn 4791  df-fv 4796  df-mpt 5653
This theorem is referenced by:  fvmpt2i  5704  fvmptex  5722
  Copyright terms: Public domain W3C validator