New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ifbothda | GIF version |
Description: A wff θ containing a conditional operator is true when both of its cases are true. (Contributed by NM, 15-Feb-2015.) |
Ref | Expression |
---|---|
ifboth.1 | ⊢ (A = if(φ, A, B) → (ψ ↔ θ)) |
ifboth.2 | ⊢ (B = if(φ, A, B) → (χ ↔ θ)) |
ifbothda.3 | ⊢ ((η ∧ φ) → ψ) |
ifbothda.4 | ⊢ ((η ∧ ¬ φ) → χ) |
Ref | Expression |
---|---|
ifbothda | ⊢ (η → θ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifbothda.3 | . . 3 ⊢ ((η ∧ φ) → ψ) | |
2 | iftrue 3669 | . . . . . 6 ⊢ (φ → if(φ, A, B) = A) | |
3 | 2 | eqcomd 2358 | . . . . 5 ⊢ (φ → A = if(φ, A, B)) |
4 | ifboth.1 | . . . . 5 ⊢ (A = if(φ, A, B) → (ψ ↔ θ)) | |
5 | 3, 4 | syl 15 | . . . 4 ⊢ (φ → (ψ ↔ θ)) |
6 | 5 | adantl 452 | . . 3 ⊢ ((η ∧ φ) → (ψ ↔ θ)) |
7 | 1, 6 | mpbid 201 | . 2 ⊢ ((η ∧ φ) → θ) |
8 | ifbothda.4 | . . 3 ⊢ ((η ∧ ¬ φ) → χ) | |
9 | iffalse 3670 | . . . . . 6 ⊢ (¬ φ → if(φ, A, B) = B) | |
10 | 9 | eqcomd 2358 | . . . . 5 ⊢ (¬ φ → B = if(φ, A, B)) |
11 | ifboth.2 | . . . . 5 ⊢ (B = if(φ, A, B) → (χ ↔ θ)) | |
12 | 10, 11 | syl 15 | . . . 4 ⊢ (¬ φ → (χ ↔ θ)) |
13 | 12 | adantl 452 | . . 3 ⊢ ((η ∧ ¬ φ) → (χ ↔ θ)) |
14 | 8, 13 | mpbid 201 | . 2 ⊢ ((η ∧ ¬ φ) → θ) |
15 | 7, 14 | pm2.61dan 766 | 1 ⊢ (η → θ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∧ wa 358 = wceq 1642 ifcif 3663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-if 3664 |
This theorem is referenced by: ifboth 3694 |
Copyright terms: Public domain | W3C validator |