| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > pm4.71r | GIF version | ||
| Description: Implication in terms of biconditional and conjunction. Theorem *4.71 of [WhiteheadRussell] p. 120 (with conjunct reversed). (Contributed by NM, 25-Jul-1999.) |
| Ref | Expression |
|---|---|
| pm4.71r | ⊢ ((φ → ψ) ↔ (φ ↔ (ψ ∧ φ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.71 611 | . 2 ⊢ ((φ → ψ) ↔ (φ ↔ (φ ∧ ψ))) | |
| 2 | ancom 437 | . . 3 ⊢ ((φ ∧ ψ) ↔ (ψ ∧ φ)) | |
| 3 | 2 | bibi2i 304 | . 2 ⊢ ((φ ↔ (φ ∧ ψ)) ↔ (φ ↔ (ψ ∧ φ))) |
| 4 | 1, 3 | bitri 240 | 1 ⊢ ((φ → ψ) ↔ (φ ↔ (ψ ∧ φ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 |
| This theorem is referenced by: pm4.71ri 614 pm4.71rd 616 |
| Copyright terms: Public domain | W3C validator |