NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  pm4.71rd GIF version

Theorem pm4.71rd 616
Description: Deduction converting an implication to a biconditional with conjunction. Deduction from Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by NM, 10-Feb-2005.)
Hypothesis
Ref Expression
pm4.71rd.1 (φ → (ψχ))
Assertion
Ref Expression
pm4.71rd (φ → (ψ ↔ (χ ψ)))

Proof of Theorem pm4.71rd
StepHypRef Expression
1 pm4.71rd.1 . 2 (φ → (ψχ))
2 pm4.71r 612 . 2 ((ψχ) ↔ (ψ ↔ (χ ψ)))
31, 2sylib 188 1 (φ → (ψ ↔ (χ ψ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  2reu5  3045  ralss  3333  rexss  3334  nnsucelrlem2  4426  dfco2a  5082  feu  5243  funbrfv2b  5363  dffn5  5364  fnrnfv  5365  fniniseg  5372  eqfnfv2  5394  dff4  5422  dff13  5472  nmembers1lem3  6271
  Copyright terms: Public domain W3C validator