| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > pwid | GIF version | ||
| Description: A set is a member of its power class. Theorem 87 of [Suppes] p. 47. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| pwid.1 | ⊢ A ∈ V |
| Ref | Expression |
|---|---|
| pwid | ⊢ A ∈ ℘A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwid.1 | . 2 ⊢ A ∈ V | |
| 2 | pwidg 3735 | . 2 ⊢ (A ∈ V → A ∈ ℘A) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ A ∈ ℘A |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 1710 Vcvv 2860 ℘cpw 3723 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-pw 3725 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |