New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > pwss | GIF version |
Description: Subclass relationship for power class. (Contributed by NM, 21-Jun-2009.) |
Ref | Expression |
---|---|
pwss | ⊢ (℘A ⊆ B ↔ ∀x(x ⊆ A → x ∈ B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3263 | . 2 ⊢ (℘A ⊆ B ↔ ∀x(x ∈ ℘A → x ∈ B)) | |
2 | df-pw 3725 | . . . . 5 ⊢ ℘A = {x ∣ x ⊆ A} | |
3 | 2 | abeq2i 2461 | . . . 4 ⊢ (x ∈ ℘A ↔ x ⊆ A) |
4 | 3 | imbi1i 315 | . . 3 ⊢ ((x ∈ ℘A → x ∈ B) ↔ (x ⊆ A → x ∈ B)) |
5 | 4 | albii 1566 | . 2 ⊢ (∀x(x ∈ ℘A → x ∈ B) ↔ ∀x(x ⊆ A → x ∈ B)) |
6 | 1, 5 | bitri 240 | 1 ⊢ (℘A ⊆ B ↔ ∀x(x ⊆ A → x ∈ B)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 ∈ wcel 1710 ⊆ wss 3258 ℘cpw 3723 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-pw 3725 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |