New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ralbii2 | GIF version |
Description: Inference adding different restricted universal quantifiers to each side of an equivalence. (Contributed by NM, 15-Aug-2005.) |
Ref | Expression |
---|---|
ralbii2.1 | ⊢ ((x ∈ A → φ) ↔ (x ∈ B → ψ)) |
Ref | Expression |
---|---|
ralbii2 | ⊢ (∀x ∈ A φ ↔ ∀x ∈ B ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralbii2.1 | . . 3 ⊢ ((x ∈ A → φ) ↔ (x ∈ B → ψ)) | |
2 | 1 | albii 1566 | . 2 ⊢ (∀x(x ∈ A → φ) ↔ ∀x(x ∈ B → ψ)) |
3 | df-ral 2620 | . 2 ⊢ (∀x ∈ A φ ↔ ∀x(x ∈ A → φ)) | |
4 | df-ral 2620 | . 2 ⊢ (∀x ∈ B ψ ↔ ∀x(x ∈ B → ψ)) | |
5 | 2, 3, 4 | 3bitr4i 268 | 1 ⊢ (∀x ∈ A φ ↔ ∀x ∈ B ψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 ∈ wcel 1710 ∀wral 2615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 |
This theorem depends on definitions: df-bi 177 df-ral 2620 |
This theorem is referenced by: raleqbii 2645 ralbiia 2647 ralrab 2999 |
Copyright terms: Public domain | W3C validator |