New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ralrab | GIF version |
Description: Universal quantification over a restricted class abstraction. (Contributed by Jeff Madsen, 10-Jun-2010.) |
Ref | Expression |
---|---|
ralab.1 | ⊢ (y = x → (φ ↔ ψ)) |
Ref | Expression |
---|---|
ralrab | ⊢ (∀x ∈ {y ∈ A ∣ φ}χ ↔ ∀x ∈ A (ψ → χ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralab.1 | . . . . 5 ⊢ (y = x → (φ ↔ ψ)) | |
2 | 1 | elrab 2995 | . . . 4 ⊢ (x ∈ {y ∈ A ∣ φ} ↔ (x ∈ A ∧ ψ)) |
3 | 2 | imbi1i 315 | . . 3 ⊢ ((x ∈ {y ∈ A ∣ φ} → χ) ↔ ((x ∈ A ∧ ψ) → χ)) |
4 | impexp 433 | . . 3 ⊢ (((x ∈ A ∧ ψ) → χ) ↔ (x ∈ A → (ψ → χ))) | |
5 | 3, 4 | bitri 240 | . 2 ⊢ ((x ∈ {y ∈ A ∣ φ} → χ) ↔ (x ∈ A → (ψ → χ))) |
6 | 5 | ralbii2 2643 | 1 ⊢ (∀x ∈ {y ∈ A ∣ φ}χ ↔ ∀x ∈ A (ψ → χ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∈ wcel 1710 ∀wral 2615 {crab 2619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-rab 2624 df-v 2862 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |