New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > raleqbii | GIF version |
Description: Equality deduction for restricted universal quantifier, changing both formula and quantifier domain. Inference form. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
raleqbii.1 | ⊢ A = B |
raleqbii.2 | ⊢ (ψ ↔ χ) |
Ref | Expression |
---|---|
raleqbii | ⊢ (∀x ∈ A ψ ↔ ∀x ∈ B χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleqbii.1 | . . . 4 ⊢ A = B | |
2 | 1 | eleq2i 2417 | . . 3 ⊢ (x ∈ A ↔ x ∈ B) |
3 | raleqbii.2 | . . 3 ⊢ (ψ ↔ χ) | |
4 | 2, 3 | imbi12i 316 | . 2 ⊢ ((x ∈ A → ψ) ↔ (x ∈ B → χ)) |
5 | 4 | ralbii2 2643 | 1 ⊢ (∀x ∈ A ψ ↔ ∀x ∈ B χ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 = wceq 1642 ∈ wcel 1710 ∀wral 2615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-cleq 2346 df-clel 2349 df-ral 2620 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |