New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ralbiia | GIF version |
Description: Inference adding restricted universal quantifier to both sides of an equivalence. (Contributed by NM, 26-Nov-2000.) |
Ref | Expression |
---|---|
ralbiia.1 | ⊢ (x ∈ A → (φ ↔ ψ)) |
Ref | Expression |
---|---|
ralbiia | ⊢ (∀x ∈ A φ ↔ ∀x ∈ A ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralbiia.1 | . . 3 ⊢ (x ∈ A → (φ ↔ ψ)) | |
2 | 1 | pm5.74i 236 | . 2 ⊢ ((x ∈ A → φ) ↔ (x ∈ A → ψ)) |
3 | 2 | ralbii2 2643 | 1 ⊢ (∀x ∈ A φ ↔ ∀x ∈ A ψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∈ wcel 1710 ∀wral 2615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 |
This theorem depends on definitions: df-bi 177 df-ral 2620 |
This theorem is referenced by: dffun8 5135 funcnv3 5158 fncnv 5159 fnres 5200 fvreseq 5399 isoini2 5499 |
Copyright terms: Public domain | W3C validator |