NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ralbiia GIF version

Theorem ralbiia 2647
Description: Inference adding restricted universal quantifier to both sides of an equivalence. (Contributed by NM, 26-Nov-2000.)
Hypothesis
Ref Expression
ralbiia.1 (x A → (φψ))
Assertion
Ref Expression
ralbiia (x A φx A ψ)

Proof of Theorem ralbiia
StepHypRef Expression
1 ralbiia.1 . . 3 (x A → (φψ))
21pm5.74i 236 . 2 ((x Aφ) ↔ (x Aψ))
32ralbii2 2643 1 (x A φx A ψ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wcel 1710  wral 2615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557
This theorem depends on definitions:  df-bi 177  df-ral 2620
This theorem is referenced by:  dffun8  5135  funcnv3  5158  fncnv  5159  fnres  5200  fvreseq  5399  isoini2  5499
  Copyright terms: Public domain W3C validator