NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ralv GIF version

Theorem ralv 2873
Description: A universal quantifier restricted to the universe is unrestricted. (Contributed by NM, 26-Mar-2004.)
Assertion
Ref Expression
ralv (x V φxφ)

Proof of Theorem ralv
StepHypRef Expression
1 df-ral 2620 . 2 (x V φx(x V → φ))
2 vex 2863 . . . 4 x V
32a1bi 327 . . 3 (φ ↔ (x V → φ))
43albii 1566 . 2 (xφx(x V → φ))
51, 4bitr4i 243 1 (x V φxφ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176  wal 1540   wcel 1710  wral 2615  Vcvv 2860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-ral 2620  df-v 2862
This theorem is referenced by:  ralcom4  2878  viin  4026  ssofss  4077
  Copyright terms: Public domain W3C validator