| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > sb3an | GIF version | ||
| Description: Conjunction inside and outside of a substitution are equivalent. (Contributed by NM, 14-Dec-2006.) |
| Ref | Expression |
|---|---|
| sb3an | ⊢ ([y / x](φ ∧ ψ ∧ χ) ↔ ([y / x]φ ∧ [y / x]ψ ∧ [y / x]χ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an 936 | . . 3 ⊢ ((φ ∧ ψ ∧ χ) ↔ ((φ ∧ ψ) ∧ χ)) | |
| 2 | 1 | sbbii 1653 | . 2 ⊢ ([y / x](φ ∧ ψ ∧ χ) ↔ [y / x]((φ ∧ ψ) ∧ χ)) |
| 3 | sban 2069 | . 2 ⊢ ([y / x]((φ ∧ ψ) ∧ χ) ↔ ([y / x](φ ∧ ψ) ∧ [y / x]χ)) | |
| 4 | sban 2069 | . . . 4 ⊢ ([y / x](φ ∧ ψ) ↔ ([y / x]φ ∧ [y / x]ψ)) | |
| 5 | 4 | anbi1i 676 | . . 3 ⊢ (([y / x](φ ∧ ψ) ∧ [y / x]χ) ↔ (([y / x]φ ∧ [y / x]ψ) ∧ [y / x]χ)) |
| 6 | df-3an 936 | . . 3 ⊢ (([y / x]φ ∧ [y / x]ψ ∧ [y / x]χ) ↔ (([y / x]φ ∧ [y / x]ψ) ∧ [y / x]χ)) | |
| 7 | 5, 6 | bitr4i 243 | . 2 ⊢ (([y / x](φ ∧ ψ) ∧ [y / x]χ) ↔ ([y / x]φ ∧ [y / x]ψ ∧ [y / x]χ)) |
| 8 | 2, 3, 7 | 3bitri 262 | 1 ⊢ ([y / x](φ ∧ ψ ∧ χ) ↔ ([y / x]φ ∧ [y / x]ψ ∧ [y / x]χ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 ∧ wa 358 ∧ w3a 934 [wsb 1648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 |
| This theorem is referenced by: sbc3ang 3105 |
| Copyright terms: Public domain | W3C validator |