New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sbc3ang | GIF version |
Description: Distribution of class substitution over triple conjunction. (Contributed by NM, 14-Dec-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
sbc3ang | ⊢ (A ∈ V → ([̣A / x]̣(φ ∧ ψ ∧ χ) ↔ ([̣A / x]̣φ ∧ [̣A / x]̣ψ ∧ [̣A / x]̣χ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq2 3050 | . 2 ⊢ (y = A → ([y / x](φ ∧ ψ ∧ χ) ↔ [̣A / x]̣(φ ∧ ψ ∧ χ))) | |
2 | dfsbcq2 3050 | . . 3 ⊢ (y = A → ([y / x]φ ↔ [̣A / x]̣φ)) | |
3 | dfsbcq2 3050 | . . 3 ⊢ (y = A → ([y / x]ψ ↔ [̣A / x]̣ψ)) | |
4 | dfsbcq2 3050 | . . 3 ⊢ (y = A → ([y / x]χ ↔ [̣A / x]̣χ)) | |
5 | 2, 3, 4 | 3anbi123d 1252 | . 2 ⊢ (y = A → (([y / x]φ ∧ [y / x]ψ ∧ [y / x]χ) ↔ ([̣A / x]̣φ ∧ [̣A / x]̣ψ ∧ [̣A / x]̣χ))) |
6 | sb3an 2070 | . 2 ⊢ ([y / x](φ ∧ ψ ∧ χ) ↔ ([y / x]φ ∧ [y / x]ψ ∧ [y / x]χ)) | |
7 | 1, 5, 6 | vtoclbg 2916 | 1 ⊢ (A ∈ V → ([̣A / x]̣(φ ∧ ψ ∧ χ) ↔ ([̣A / x]̣φ ∧ [̣A / x]̣ψ ∧ [̣A / x]̣χ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ w3a 934 = wceq 1642 [wsb 1648 ∈ wcel 1710 [̣wsbc 3047 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-sbc 3048 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |